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Abstract— NASA has been developing and demonstrating new 
concepts and technologies for Integrated Arrival, Departure, and 
Surface (IADS) traffic management capabilities under the 
Airspace Technology Demonstration 2 (ATD-2) project. One of 
the IADS capabilities in the ATD-2 project is surface metering 
enabled by a tactical surface scheduler to provide controllers with 
the pushback advisories for departures at gates. The tactical 
surface scheduler uses the estimated flight ready times provided 
by airlines, called Earliest Off-Block Times (EOBTs), as input to 
calculate the target off-block times for pushback advisories. 
However, the EOBTs are often inaccurate and deviate from the 
actual flight ready times, which may reduce the benefits of surface 
metering. In this paper, a linear regression model is developed to 
model the EOBT uncertainty distribution over time based on 
actual EOBT data collected at Charlotte airport. This EOBT 
model is integrated with a tactical surface scheduler and a fast-
time simulation tool. To evaluate the impact of the EOBT accuracy 
on airport surface operations, fast-time simulations are 
implemented for selected traffic scenarios under different levels of 
modelled EOBT accuracy. The simulation results show that the 
EOBT uncertainty affects several performance metrics related to 
the surface metering, such as gate hold, taxi time reduction, and 
target takeoff time predictability, which in turn influences ATD-
2’s scheduler performance.  

Keywords—fast-time simulation, flight ready time estimation, 
tactical surface scheduler, airport surface metering 

I. INTRODUCTION

NASA has developed an Integrated Arrival, Departure, and 
Surface (IADS) traffic management system and deployed it at 
Charlotte Douglas International Airport (CLT) in North 
Carolina for field evaluation under the Airspace Technology 
Demonstration 2 (ATD-2) project [1]. One of the main IADS 
system capabilities evaluated during the ATD-2 Phase 1 effort 
is surface metering enabled by a tactical surface scheduler for 
efficient aircraft operations. The tactical surface scheduler 
calculates the Target Takeoff Times (TTOT) of departures 
based 

on the Unimpeded Taxi-out Time (UTT) from gate to runway 
and the estimated flight ready time provided by airlines, called 
Earliest Off-Block Time (EOBT). Then, the scheduler provides 
ramp controllers with pushback advisories to mitigate the 
congestion on the ground and reduce taxi time [2]. Therefore, 
the accuracy of the EOBT data is one of the key factors that 
determine the performance of the scheduler [3].  

Airlines have their own business rules to generate the 
EOBTs of departures as accurately as possible and update them 
until actual pushback, based on flight readiness status, 
turnaround time from the previous flight, passenger boarding 
progress, and baggage loading rate. They also keep updating 
their prediction algorithms to improve the EOBT prediction 
performance. The EOBTs, however, are often inaccurate and 
deviate from the actual flight ready times because they are 
estimated from a variety of events each with their own 
uncertainty. This uncertainty in the EOBTs makes it difficult for 
the IADS scheduler to achieve the maximum benefits from 
surface metering [4]. NASA has archived actual operations data 
from the ATD-2 field demonstration, but the relationship 
between EOBT quality and surface metering performance is not 
straightforward; there are many other factors affecting the 
surface operations day-to-day, such as traffic demand pattern, 
weather condition, runway/taxiway closure, and Traffic 
Management Initiatives. Badrinath et al. evaluated the impact of 
the EOBT uncertainty on taxi time prediction and surface 
metering benefits using a queueing network model and showed 
that the surface metering benefits in terms of taxi-out time 
savings significantly reduced due to the EOBT errors. Their 
framework, however, was based on several assumptions (e.g., 
normal distribution for EOBT errors and no loss in runway 
throughput) for simplified analyses [4].  

In this study, therefore, we investigate the impact of the 
EOBT uncertainty on the airport surface traffic management 
performance and benefits of surface metering through fast-time 
simulation, which allows us to target specific variables of 
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interest and repeat the simulation runs with different values 
while other conditions remain the same. In this case, the 
variables related to the EOBT accuracy will be targeted. For the 
fast-time simulation, we use the Surface Operations Simulators 
and Scheduler (SOSS), NASA’s fast-time simulation tool 
developed for concept evaluation of airport surface operations 
[5]. SOSS fast-time simulations were used to determine the 
effect of the taxi time delay buffer on the performance of the 
tactical surface scheduler used in the ATD-2 project [6]. SOSS 
was also utilized to assess the benefits and costs of the ATD-2 
concept operations at several busy airports [7].  

This paper describes the following contributions. First, 
based on the actual EOBT data recorded at CLT, we proposed a 
linear regression-based EOBT quality model that represents the 
way airlines update the EOBTs of individual departure flights, 
considering the accuracy compared to the actual pushback time 
and the update interval. This EOBT quality model could 
generate not only EOBT data with a distribution similar to actual 
EOBT data, but also different distributions for varying EOBT 
accuracy. Second, the fast-time simulation model to assess the 
impact of the EOBT uncertainty was developed by integrating 
the SOSS simulation engine with the ATD-2 tactical surface 
scheduler and the EOBT model. This simulation model was then 
validated with the actual operations data. Lastly, multiple fast-
time simulation runs were implemented with different levels of 
EOBT accuracy. To evaluate how the EOBT uncertainty affects 
airport performance and benefits of surface metering, the 
simulation results were analyzed in terms of various 
measurements, including the number of metered flights, gate 
hold time, taxi-out time, takeoff delay, and target takeoff time 
compliance and predictability. 

This paper is organized as follows: Section II provides how 
the EOBT model is developed based on the actual EOBT data 
analysis at CLT. In Section III, the fast-time simulation 
framework that integrates the SOSS tool with the ATD-2 tactical 
surface scheduler, as well as the EOBT model, is described. This 
simulation model is validated with traffic scenarios from actual 
operations data. Section IV explains how the fast-time 
simulations are set up to evaluate the impact of the EOBT 
uncertainty and compares various airport surface performance 
metrics, depending on the EOBT accuracy level, from the 
simulation results. Section V concludes with a summary of key 
findings from the EOBT impact study using the fast-time 
simulation.  

II. EOBT MODEL 
In this section, we characterize the EOBT data provided by 

airlines as a series of purely random events, which are the 
combination of the two probabilistic quantities: 1) the timing of 
the updates up to the Actual Off-Block Time (AOBT), and 2) 
the accuracy of the updated EOBTs as a function of the timing. 
We first propose a modeling framework that produces such 
probabilistic EOBT updates, and then use the probability 
distributions of the actual EOBT errors at CLT to estimate the 
model parameters. The proposed statistical model generating 
EOBT values will be used in the fast-time simulation for 
evaluating the impact of EOBT accuracy on airport surface 
operations.  

A. EOBT Data Analysis 
One-week of flight data from CLT in February 12-18, 2018 

were used for the EOBT data analysis. Some irregular flight data 
like cancelled or return-to-gate flights were filtered out. This 
resulted in 2,280 flights in total, for which 3,761 EOBT updates 
were observed. In this analysis, two main variables were 
analyzed: 1) EOBT accuracy, and 2) EOBT update interval. The 
EOBT accuracy is defined as the difference between actual and 
estimated off-block times (AOBT – EOBT). The EOBT update 
interval represents the time between two EOBT updates of the 
same flight, or between the last EOBT update time and AOBT.  

Fig. 1 shows the EOBT accuracy changes in the lookahead 
time window [-30 min, 0 min] as the time becomes closer to the 
actual off-block time. Each line represents a sequence of EOBT 
updates for a single flight within the lookahead time window. 
Circles represent cases where the flight has only a single EOBT 
update within the lookahead time window. Connection lines 
from the last EOBT to the AOBT were not drawn for better 
visualization. This plot shows that in general, the EOBT errors 
tend to decrease to negative values as the time progresses. This 
result implies that the EOBT prediction becomes more 
conservative (i.e., EOBT is later than AOBT), as it approaches 
AOBT. The same patterns were reported in the analysis of the 
EOBT data from the FAA’s Traffic Flow Management System 
(TFMS) for CLT [4].  

 

Fig. 1 EOBT error changes over time, with update sequences 

B. EOBT Model Development 
For the EOBT model development, a two-step approach was 

used. First, we modelled the EOBT update times of each flight 
within the [-30 min, 0 min] lookahead time window. Then, we 
modelled the EOBT accuracy at each update time given from 
the first step. We tried to create a model that could produce an 
EOBT distribution similar to the actual EOBT data distribution. 
We also tried to minimize the number of parameters to ease 
configuration changes necessary to generate different EOBT 
distributions, with the support of probability distributions 

 



provided by commercial software libraries like Apache 
Commons Math package and MATLAB.  

In the first step for modeling EOBT update times, we 
considered the following two variables: 1) the number of EOBT 
updates per flight (referred to as PD1), and 2) the time elapsed 
from the reference time (i.e., 30 min before AOBT) to the time 
when the EOBT value is updated (referred to as PD2). To model 
how many times the EOBTs are updated for a single flight, 
Poisson distribution was chosen because this discrete probability 
distribution is commonly used to model the number of events 
happening, with one parameter (l). For the update time distance 
modeling, the Weibull distribution was selected, which was 
originally used for particle size distribution modeling. In the 
EOBT model, the time elapsed between two updates can be 
modelled as a ‘size’ in time, given the number of EOBT updates 
obtained from the Poisson distribution. The Weibull 
distribution, which has only two parameters (A and B), showed 
the better fit to our EOBT data samples among various 
continuous distributions available from Apache Commons Math 
package. From the actual data analysis, we tried to fit the 
probability distributions of these two values, as shown in Fig. 2. 
The histogram bar graphs (blue) and regression curves (red) 
represent the actual data and the modelled distributions, 
respectively. The EOBT update times, Xk, for each flight can be 
modelled using the values randomly sampled from these two 
distributions and (1). 

 Xk = -30 + random(PD2), k = 1, 2, …, random(PD1) (1) 

In the second step, we first developed a linear regression 
model, as expressed in (2), to fit the average accuracy trend 
along the lookahead time. In (2), x and y represent the lookahead 
time to the actual off-block time and the mean EOBT error 
(AOBT-EOBT) at x, respectively, with the regression 
coefficients, c0 and c1.  

 y = c0 + c1 * x (2) 

Next, we fitted a sequence of probability distributions with 
actual EOBT error data in 3-minute bins within the [-30, 0] 
lookahead time window to obtain the mean (µ) and standard 
deviation (s) values. As shown in the upper plot in Fig. 3, the 
sigma values did not vary much with the lookahead time, except 
at very short lookahead times where the sample size was small. 
To make it easy to configure the model, we decided to use a 
single sigma value across all lookahead times, which was 
calculated as the mean weighted by the sample size of the data 
within each lookahead time bin. This overall weighted sigma 
value is drawn in a red line in Fig. 3. Using zero mean and the 
weighted sigma value, we created a probability distribution for 
EOBT accuracy (PD3). The EOBT accuracy, Y, can be modelled 
using the following equation: 

 Y = c0 + c1 * Xk + random(PD3) (3) 

where Xk is the EOBT update time from the previous model in 
(1). 

 

Fig. 2 The number of EOBT updates (top) and the EOBT update times within 
[-30 min, 0 min] lookahead time window (bottom). 

 

Fig. 3 Parameters over lookahead time for EOBT accuracy model: Sigma 
values (top) and weighting factors (bottom). 
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C. EOBT Model Validation 
From the data analysis using the actual 1-week EOBT data 

at CLT, we obtained the following parameters in TABLE I.  

TABLE I.  PARAMETERS IN EOBT MODEL 

EOBT Model Probability Distribution or 
Regression Model Parameters 

EOBT update 
time model 

PD1: Poisson  l = 1.65 
PD2: Weibull A = 8.1, B = 1.6 

EOBT accuracy 
model 

PD3: Normal µ = 0, s = 3.02 
Linear Regression c0 = -12.67, c1 = -0.54 

 

With the given parameters in TABLE I, we generated the 
EOBT time values from the proposed EOBT model for model 
validation. The top and bottom scatter plots in Fig. 4 show the 
actual data of EOBT errors vs. lookahead time and the test 
dataset of EOBT errors generated from our EOBT model vs. 
lookahead time, respectively. The EOBT values from the EOBT 
model cannot be exactly the same as the actual EOBTs for an 
individual flight, but it is shown that the distributions are 
visually similar.  

 

 

Fig. 4 EOBT distribution comparison: Actual EOBT data (top) and EOBT 
data generated from EOBT model for test (bottom).  

III. FAST-TIME SIMULATION SETUP AND VALIDATION 
This section describes how the fast-time simulation model is 

integrated with the tactical surface scheduler, as well as with the 
EOBT model developed in the previous section. This simulation 
model is validated with actual operations data at CLT.  

A. Integration with Tactical Scheduler and EOBT Model 
For the fast-time simulation, we used SOSS as the simulation 

engine. SOSS is a fast-time air traffic simulation tool that NASA 
has developed and improved for the concept evaluation of 
airport surface operations [5]. It can also be connected with 
external modules like a scheduler function, through a common 
algorithmic interface for data exchanges. As input, SOSS 
receives the basic flight information required for the simulation 
from a traffic scenario file, which includes flight call sign, 
aircraft type, origin and destination airports, gate, runway, and 
scheduled times of departures and arrivals.  

In this research, SOSS was integrated with the tactical 
surface scheduler used in the ATD-2 field evaluation. For 
smooth data exchanges between SOSS and the scheduler, we 
adopted the Surface Modeling module, representing the IADS 
Surface Modeler used in the ATD-2 project [3]. This module not 
only processes the input and output of the tactical surface 
scheduler such as flight plan data, current flight states, pilot 
ready call, surface trajectory prediction, scheduling group, and 
estimated and scheduled times of arrival at control points on the 
surface, but also takes the EOBT data from the EOBT model, as 
well as the external parameters from the airport adaptation files. 
The EOBT model, mimicking airline’s EOBT data sources, 
provides occasional EOBT updates of the scheduled departures 
until pushback. From the tactical surface scheduler, SOSS 
receives the metering data, including the flights subject to 
surface metering and their Target Off-Block Times (TOBTs). 
The data flow between SOSS, Surface Modeling module, EOBT 
model, and tactical surface scheduler is illustrated in Fig. 5. In 
this simulation, it is assumed that the departures push back at the 
given times (i.e., TOBT from the tactical surface scheduler for 
metered flights, or flight ready time for non-metered flights), 
without any delay. A detailed description of the ATD-2 tactical 
surface scheduler can be found in [3]. 

 

Fig. 5 Data flow between SOSS, Surface Modeling module, EOBT Model, 
and Tactical Surface Scheduler. 

 

  



B. Simulation Scenarios 
The traffic scenarios used in the simulation were created 

based on the actual flight data at CLT. Four days having large 
surface delay during the most congested time period (9-11am) 
were selected for the ‘South Simultaneous’ configuration. Fig. 6 
depicts the CLT airport diagram, where three parallel runways 
(18L/36R, 18C/36C, and 18R/36L) and one diagonal runway 
(5/23) are shown. In the ‘South Simultaneous’ configuration, 
three south parallel runways (18C, 18L, and 18R) are used for 
arrivals, whereas two runways near the main terminal (18C and 
18L) are used for departures.  

 

Fig. 6 CLT airport layout. 

For the selected scenario dates, TABLE II shows the number 
of departures and arrivals in each date, as well as the target 
excess taxi-out time for the tactical surface scheduler. The target 
excess taxi time is a parameter defined in time units set by the 
users that influences the maximum amount of excess taxi time 
the departure aircraft may experience when surface metering 
turns on. Less excess taxi time and longer gate holding are 
expected as the target excess taxi time parameter is made smaller 
[2].  

TABLE II.  FLIGHT COUNTS FOR EACH TRAFFIC SCENARIOS 

Scenario 
Dates 

Departure Count Arrival Count Target 
Excess 
Taxi 
Time 

18C 18L All 18C 18L 18R All 

1/22/2018 53 39 92 8 35 52 95 9 min 
1/23/2018 50 41 91 9 26 49 84 9 min 
2/12/2018 52 46 98 9 39 47 95 8 min 
2/14/2018 46 45 91 5 30 48 78 9 min 

 

C. Simulation Model Validation 
Before running the fast-time simulation with the tactical 

surface scheduler, the simulation model was validated based on 
the actual operations data. In this validation, the SOSS model 
was run without connection to the tactical surface scheduler. In 
the traffic scenarios, actual off-block times were used as 
departure pushback time input. Similarly, actual landing times 
were simulated for arrivals. The ramp and movement area taxi 
speed values for individual departures and arrivals, as well as 
pushback process times for engines spooling up, were derived 
from actual operations data and adjusted to obtain the better 
match between simulation output and actual data in terms of 
taxi-out/in times and surface counts. The runway separation 
times were also adjusted to make the simulated runway 
throughput close to the actual throughput for each runway.  

For the validation, we compared the simulation output with 
the actual data in terms of several airport performance metrics, 
including taxi-out and taxi-in times (total and broken up by ramp 
area and airport movement area), runway throughputs, and 
aircraft counts on the surface. In this section, the comparison 
results of total taxi-out/in times and runway throughput on 
January 22nd, 2018 are shown as a representative example. 

 

Fig. 7 Comparison of simulation output (“sim”) and actual operations data 
(“ops”) for validation: Taxi-out times (top) and taxi-in times (bottom). This is 
an example result for the 1/22/2018 scenario. 

Fig. 7 shows the average taxi-out times (top) and taxi-in 
times (bottom) by runway from the simulation (‘sim’ in plots) 
and actual data (‘ops’ in plots) for the scenario on 1/22/2018. 
The mean and median values of taxi times for all flights from 
simulation and actual data are similar, although there are small 
differences at each runway level. The accumulated runway 
throughputs were also compared, as shown in Fig. 8. The 

 

 
 

 



simulation cannot exactly mimic the actual operations, which 
have some uncertainties beyond the simulation modeling 
capability, but the throughput curves show a good match with 
each other.  

 

 

Fig. 8 Comparison of simulation output (‘sim’) and actual operations data 
(‘actual’) for validation: Accumulated runway throughput for runways 18C 
(top) and 18L (bottom). 

IV. EOBT ACCURACY IMPACT STUDY USING FAST-TIME 
SIMULATION 

In this section, we investigate the impacts of the EOBT 
accuracy using the fast-time simulation model that was validated 
with actual operations data in Section III. Four different EOBT 
uncertainty levels are set up for the given traffic scenarios by 
adjusting the accuracy parameter in the EOBT model described 
in Section II. After implementing multiple simulation runs, 
various performance metrics from the simulation outputs will be 
analyzed.  

A. Simulation Setup for EOBT Accuracy Impact Study 
To assess the impact of the EOBT accuracy on the airport 

performance, we set up four different EOBT configurations for 
each traffic scenario. From the EOBT model developed in 
Section II, we created different EOBT accuracy levels by 
adjusting the sigma (s) value, while maintaining the same 

values for other parameters in the model, as shown in TABLE 
III. The last column in the table shows the standard deviation of 
the EOBT errors. The Sigma3 case in TABLE III is the baseline 
where the parameters match the EOBT model fit to actual EOBT 
data at CLT from TABLE I. As a reference, we also defined a 
‘Perfect EOBT’ case, named Sigma0, where EOBTs do not 
change over time, and the initially given EOBT is exactly the 
same as the actual flight ready time. Fig. 9 shows the 
distributions of EOBT values simulated from the EOBT models 
with different sigma values. The red line in each plot shows the 
trend from the scattered data. As expected, the EOBT accuracy 
shows larger variations as the sigma value increases from 0 to 5.  

TABLE III.  PARAMETERS FOR EACH EOBT CONFIGURATION 

Case 
name l A B c0 c1 s Std. 

Dev. 

Sigma0 1.65 8.1 1.6 0 0 0 0 

Sigma1 1.65 8.1 1.6 -12.67 -0.54 1.00 2.73 
Sigma3 

(baseline) 1.65 8.1 1.6 -12.67 -0.54 3.02 3.93 

Sigma5 1.65 8.1 1.6 -12.67 -0.54 5.00 5.58 
 

 

Fig. 9 EOBT distributions with different sigma values.  

For each EOBT configuration from TABLE III and each 
traffic scenario from TABLE II, we implemented 20 simulation 
runs with perturbed inputs. In the fast-time simulations, the 
perturbation variables were the EOBT values generated from the 
EOBT model and the flight ready times. The flight ready times 
for individual departures were randomly sampled from a normal 
distribution [mean, std. dev., minimum, maximum] = [-3.0, 1.0, 
-10.0, 4.0] (in minutes), with respect to scheduled off-block 
times. With this stochastic simulation setup, each traffic 
scenario had a total of 80 simulation runs. 

B. Simulation Result Analysis 
To analyze the simulation outputs, several airport 

performance metrics were measured. These metrics include the 
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number of metered flights, gate hold time, taxi-out time, takeoff 
delay, target takeoff time compliance and its predictability.  

1) Number of metered flights 
TABLE IV shows the number of metered flights for each 

scenario date, depending on the EOBT uncertainty level. In 
general, the number of departures subject to surface metering 
depends on the target excess taxi time parameter predefined in 
the scheduler and the traffic demand distribution in the given 
scenario. The lower the target excess taxi time value is set, the 
more departures are held at gates. The number of metered flights 
is also determined by the degree of traffic concentration (i.e., 
how many flights are concentrated in the peak time) since the 
beginning of metering. Because both the target excess taxi time 
parameter and traffic demand are fixed in this study, the 
numbers of metered flights are almost constant for each given 
scenario, regardless of the EOBT uncertainty level.  

TABLE IV.  NUMBER OF METERED FLIGHTS 

Scenario 
Dates 

Departure 
Count 

EOBT Configuration 

Sigma0 Sigma1 Sigma3 Sigma5 

1/22/2018 92 35 36 35 33 

1/23/2018 91 21 22 22 24 

2/12/2018 98 27 28 29 30 

2/14/2018 91 17 17 16 17 

 

2) Gate hold 
In this paper, the gate hold time for a departure aircraft is 

defined as the difference between its flight ready time and the 
target off-block time provided from the tactical surface 
scheduler. Fig. 10 shows the mean overall gate hold times, 
which are calculated as the sum of gate hold times divided by 
the number of all departures in the scenario, by different EOBT 
configuration for the four traffic scenarios. The gate hold 
generally increases with the EOBT variations. This is related to 
how the Target Off-Block Times (TOBTs) are calculated in the 
tactical surface scheduler. Equation (4) describes the logic of the 
TOBT calculation [2].  

 TOBT = max{EOBT or Current Time, TTOT – UTT – Y}(4) 

where UTT is the unimpeded taxi time from gate to runway, and 
Y is the target excess taxi-out time. 

Basically, the target off-block time is a function of EOBT, 
but if the EOBT is already passed or less than the desired 
pushback time calculated from the TTOT, the TOBT is 
independent of the EOBT. In that case, the TOBTs strongly rely 
on the traffic demand, which determines the TTOTs considering 
the separation requirements between consecutive takeoffs and 
other runway constraints, given the target excess taxi time 
parameter. The mean gate hold in the perfect EOBT condition 
(Sigma0) represents this case. Among the metered flights in the 
other EOBT configurations, a few departures have large 
(negative) EOBT errors and induce longer gate hold. As a result, 
they take a relatively small portion of the mean gate hold, as can 
be seen in Fig. 10.  

 

Fig. 10 Mean overall gate hold by EOBT accuracy (in minutes). 

3) Taxi-out times and their reduction by surface metering 
We then analyzed the taxi-out times of departures, which is 

defined as the aircraft transit time from actual pushback to 
wheels-off. Fig. 11 shows the average taxi-out times in the ramp 
area (dark green) and the airport movement area (AMA) (light 
green) for the departures toward both departure runways (18C 
on the left and 18L on the right), depending on the EOBT 
accuracy represented by the sigma value. The average taxi times 
for each runway are almost constant, regardless of the sigma 
value, although the AMA taxi time for 18C is longer than for 
18L due to the airport layout. It seems that the taxi times are not 
affected by the EOBT accuracy because the departures are 
metered by the tactical surface scheduler in all the cases, 
resulting in the maximum taxi time reduction achievable for the 
given target excess taxi time parameter. This plot is for the 
1/22/2018 scenario, but the other plots for the remaining traffic 
scenarios also show the same trend.  

 

Fig. 11 Mean taxi-out times by EOBT accuracy for the 1/22/2018 scenario (in 
minutes). The error bar in each bar represents the standard deviation of the total 
taxi-out times in ramp area and AMA. 
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To assess the benefits of surface metering, the taxi-out time 
reduction by gate holding was also analyzed. Fig. 12 shows the 
mean values of the taxi-out time reduction, defined as the 
difference of taxi-out times between when metering was on and 
off, for each scenario and EOBT accuracy. Compared to the taxi 
times when metering is not applied, we can see that the taxi 
times are reduced by 0.7~1.7 minutes per aircraft through 
surface metering. In addition, as the estimated flight ready times 
become more accurate, the amount of taxi time reduction 
increases. For these four scenarios, however, it seems that there 
is no notable improvement between the Sigma1 and Sigma5 
cases because the existence of flights having wrong EOBT 
information itself attenuates the benefits of surface metering by 
making it difficult for the scheduler to sort the takeoff sequence 
and calculate the target takeoff times. From these results, in 
general, we can conclude that surface metering reduces taxi-out 
times, but the existence of EOBT errors, regardless of the size 
of the errors, prevents the tactical surface scheduler from 
maximizing the benefits in taxi time reduction.  

 

Fig. 12 Mean taxi-out time reduction by EOBT accuracy (in minutes). 

4) Takeoff delay 
When implementing surface metering, it would be a concern 

if the metered departures take off later than scheduled due to 
gate holding. Therefore, the takeoff delay of the metered 
departures was analyzed here. In this analysis, takeoff delay was 
calculated as expressed in (5).  

 Takeoff delay = ATOT - (Flight Ready Time + UTT) (5) 

where ATOT and UTT represent actual takeoff time and 
unimpeded taxi-out time from gate to runway, respectively.  

For easier trend observations, takeoff delay results were 
aggregated from the four different traffic scenarios and shown 
in Fig. 13 with the corresponding gate holding times for each 
EOBT configuration. According to the simulation results, it 
seems that there is no significant correlation between gate hold 
and takeoff delay (p value = 0.0766). Although departures are 
held at gates longer when their EOBTs are less accurate, gate 
holding for surface metering does not significantly add more 

takeoff delay because the surface metering by holding 
departures at gates during a peak period can mitigate the 
congestion on the surface and reduce waiting times in departure 
queues. Also, this result may be related to the priority rules in 
the tactical scheduler. In other words, the flights having 
inaccurate EOBTs are handled as uncertain flights and sent to 
later runway slots, whereas the flights with accurate EOBTs fill 
in the takeoff slots efficiently. The results are also supported by 
other metrics such as runway throughput and the number of 
departures in the AMA. As long as the departure traffic demand 
was sufficient, there were no significant differences on the 
runway throughput and departure queue length by the EOBT 
accuracy level.  

 

Fig. 13 Mean gate hold and takeoff delay for metered flights by EOBT 
accuracy (in minutes). 

5) Target takeoff time compliance and predictability 
From the fast-time simulations, we can observe the 

compliance with the target takeoff times given by the tactical 
surface scheduler. The TTOT compliance is defined as the 
difference between actual and target takeoff times (ATOT – 
TTOT). The target takeoff times of departures are provided by 
the tactical surface scheduler, but calculated differently, 
depending on the surface metering conditions. For metered 
flights, the TTOT can be computed by summing up the TOBT, 
UTT, and buffer time, as shown in (6). In this calculation, the 
buffer time is added to prevent the departure runway from 
getting dried up while computing the target off-block time at the 
gate, and usually set to be as same as the target excess taxi time 
parameter.  

 TTOTi = TOBTi + UTTi + Buffer,   for metered flight i      (6) 

For non-metered flights, the TTOT can be calculated as 
given in (7). Basically, the TTOT is the sum of EOBT and UTT, 
but when the EOBT has already passed, the latest flight ready 
time (readyT), which is the same as the current time in the 
simulation, is used instead of EOBT to calculate the TTOT.  

 TTOTj = max{EOBTj, readyTj} + UTTj,   for non-metered 
flight j               (7) 

Figs. 14 and 15 show the histogram for TTOT compliance 
distribution and the aggregated values for mean absolute TTOT 
compliance in each EOBT configuration, respectively. 
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According to these plots, the overall TTOT compliance appears 
not to be impacted by the EOBT quality. The reason why the 
Sigma0 case shows the worst TTOT compliance is related to the 
TTOT calculation method for non-metered flights. Because the 
Sigma0 case doesn’t allow any EOBT later than the current 
ready time, the TTOTs for non-metered flights tend to be 
slightly aggressive and sometimes earlier than actual takeoff 
times, compared to other EOBT configurations. For non-
metered flights, in fact, the TTOTs are close to the unimpeded 
takeoff times, without taking waiting time in the queue into 
account.  

 

Fig. 14 TTOT compliance distributions by EOBT accuracy. 

 

Fig. 15 Mean absolute TTOT compliance by EOBT accuracy (in minutes). 

To complement TTOT compliance, another metric, TTOT 
predictability, was also evaluated by looking at the variance of 
the TTOT compliance. The top graph in Fig. 16 shows the 
standard deviations of TTOT compliance in each EOBT 
accuracy condition. As the EOBT accuracy gets worse, the 
variance of TTOT compliance becomes larger, which means 
that takeoff time predictability becomes worse. The p value of 
this standard deviation calculation was 0.0419. As an alternative 
evaluation method, the differences between the 85th and 15th 

percentiles were also observed in the bottom graph of Fig. 16, 
and it showed a similar correlation between EOBT accuracy and 
TTOT predictability. This result indicates that better EOBT 
quality can help achieve better takeoff time predictability.  

 

Fig. 16 TTOT predictability represented by the standard deviation of the TTOT 
compliance (top) and the difference between 85th and 15th percentiles of TTOT 
compliance (bottom) (in minutes). 

V. CONCLUSIONS 
The accuracy of estimated flight ready times, called EOBT, 

is known as one of the main factors determining the performance 
of a tactical scheduler for surface metering. Based on the actual 
EOBT data gathered from Charlotte airport, we developed an 
EOBT model that enabled us to generate the controlled EOBT 
data for individual flights, taking the accuracy and update 
interval into account. We then integrated this EOBT model with 
the SOSS airport surface traffic simulation engine and the ATD-
2 tactical surface scheduler for running fast-time simulations. 
Using four actual traffic scenarios at CLT, we implemented fast-
time simulations with different EOBT accuracy configurations 
in order to evaluate the impact of the EOBT quality upon the 
scheduler performance in surface operations.  

 

 

 

 



The simulation results showed that the EOBT uncertainty 
increased the amount of gate hold times, but had no impact on 
the taxi-out times of departures while surface metering was 
turned on using the given target excess taxi time parameter. 
When compared to the metering off conditions, the results 
demonstrated that surface metering did reduce taxi-out times, 
but the existence of EOBT errors attenuated some of the 
benefits. These results are roughly consistent with the previous 
analysis based on a queuing network model [4], although the 
approach and detailed parameters are different. According to the 
simulation results, the EOBT uncertainty did not show 
significant effects on the mean takeoff delays and TTOT 
compliance at the departure runways, but had statistically 
significant impact on the TTOT predictability measured by the 
standard deviation of TTOT compliance.  

As shown in this study, EOBT is not only an important 
metric that airlines calculate and use for planning their departure 
flights, but also a key input that can affect the tactical scheduler 
performance. Since the airlines keep updating their prediction 
algorithms to improve the EOBT accuracy, there may be a need 
to occasionally analyze the latest EOBT data and properly 
update the parameters used in the EOBT model, which is a 
potential future work. The EOBT model could be improved by 
varying parameters by airline. Although the EOBT accuracy is 
considered the most important parameter, in terms of scheduler 
performance, we also need to test other parameters, such as 
EOBT update interval, to evaluate their impacts on surface 
operations. Such studies will help us identify the key 
performance metrics impacted by EOBT quality and justify the 
effort and cost that airlines need to put into improving the EOBT 
accuracy. These results can also provide some insights to make 
the tactical surface scheduler robust against the uncertainty in 
the flight ready times. Lastly, this research was done for CLT, 
but it would be interesting to evaluate the impact of EOBT 

uncertainty at different busy airports and confirm that we can 
reach the same conclusions.  
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